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Abstract

The construction of internal representations in the domain

of mathematics education is conceived as a signification process

in this paper. Contrary to the established representation

theory, it does not distinguish between an externally

represented world and an internally representing world.

Representation is regarded as a process in which new 'signs' are

constantly emerging by means of continuous and cyclic

signification. Consequently, an internal representation

('signifier') transforms and is the basis ('signified') for the

construction of a new internal representation ('signifier').

Hence a person constructs internal, mental representations on

the basis of internal representations.

This concept has some implications for the instruction

model in that teaching mathematics is not to be seen merely as a

process of transmitting knowledge. Children construct basic,

internal representations demanding interactive testing. This

external dialogue leads to reflection or internal dialogue. On

the basis of reflection, representations on a higher level are

developed and, successively, these new constructions demand new

dialogue again. Higher levels of representation are not attained

on the basis of interaction alone, but on the basis of what

interaction evokes, i.e. reflection. It is for this reason that

socio-constructivistic theory should pay more attention to

reflection, because the process of level elevation can be better

understood in this fashion.

Finally, the paper discusses the relationship between
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constructivism/ socio- constructivism and the notion of realistic

mathematics education. Along with the differences, we would also

like to emphasize one essential similarity between theorists: in

both theories, mathematization is conceived of as a process of

progressive signification. Meaning or 'common sense' is the

beginning and the end of learning mathematics (Freudenthal,

1991).

KEYWORDS: realistic math education, socio-constructivism,

cognitive representation
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Representations in Mathematics Education

The idea that people form representations in their mind is

one with a long tradition. The history of science shows how time

and again, new images representing the current state of

scientific insight have been constructed (Coplestone, 1985;

Dijksterhuis, 1975). People want to clarify to each other what

they understand their world to be. Consequently, representations

come into being by a process of co-construction and are

constantly being tested and criticized by the community (Sinha,

1988).

The concept of representation is at the forefront of

cognitive psychology (DeLoache, 1989). Although the concept was

rejected by some scholars in the past as psychologically useless

(Gibson, 1966) , others considered representation to be

meaningful action (Bruner, 1974, 1996; Sinha, 1988). In their

critical analyses, constructivistically oriented mathematicians

or mathematically oriented constructivists (Von Glasersfeld,

1991) interpret the relationship between representation and what

is represented in such a way that the internal experiences are

represented instead of 'reality'. Internal representations are

therefore the issue, and this paper is referring to this concept

when the term representation is used.

Representations are not considered to be a direct

reflection of the world. Human knowledge is constructed

knowledge (Phillips, 1995); mathematical insights and procedures

are not discovered, but invented, i.e. devised by people

(Freudenthal, 1983). The position that representations are

4
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constructions has implications for the instruction model. This

infers that children are to be looked upon as active thinkers,

an idea which changes the Image of the learning child. According

to Bruner (1996), the child should be regarded both as learner

and as epistemologist. The teacher's task is to look for the

roots of systematic knowledge in the child's intuition.

The aim of the present article is to investigate what is

understood by the concept of representation in mathematics

education. The 'classical' concept of representation will be

compared with the view upheld by 'situated-cognition'

theoreticians. What does a constructivistic view of

representation mean for the didactics of mathematics education

and what are the consequences of that view for the instruction

model? The instruction model advocated in this article will be

compared with the socio-constructivistic view of mathematics

education. It will be argued that there should be a greater

focus on the concept of reflection in the above-mentioned

theory, so that the transition to higher representation levels

can be explained more adequately. On this basis, the paper will

examine what in mathematics education are considered to be

meaningful representations. Finally, the relationship between

constructivism and realistic didactics of mathematics education

will be analyzed.

Mathematical Representations as Means

of Structuring

In cognitive psychology, theoreticians - following the

logician Frege (1848-1925) - distinguish between 'referent' and

5
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' sense . ' The concept 'referent' refers to what is being

represented external reality while the concept 'sense'

refers to how something is represented. 'Sense' is

representation as such (Palmer, 1978; Kosslyn, 1978; Dretske,

1986; Bechtel & Abrahamsen, 1991). Where iconic representations

('images' Kosslyn, 1994) as well as propositional

representations (Anderson, 1990) are concerned, representation

refers to a represented, external world. However, the discussion

regarding the nature of the relationship between 'referent' and

'sense' is still ongoing (Sinha, 1988).

The way in which mathematics didacticians view the concept

of representation is closely linked to their vision of

mathematics. Mathematics is thus not the 'absolutistic' science

it has long been considered to be. It is no longer viewed as a

ready-made construction characterized by indisputable knowledge,

but as an invention of man. That is what the history of

mathematics shows; mathematicians were constantly engaged in a

debate and theorems were found to be neither useful nor

justifiable in the long run. Mathematics originates in human

activity; it is not discovered, but intentionally invented.

People devise mathematical means to order all sorts of phenomena

'phainomena' says Freudenthal (1983) - with which they are

confronted in culture (think of counting, measuring and

localizing; Bishop, 1988). We can regard those ordering means to

be 'noöemena' (Freudenthal, 1983), mathematical representations.

So L x W is a formal representation of the phenomenon surface

area. The formula sur =LxWcan be seen as an organization of
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measurement of an area of right-angled figures operating as a

representation of area. Freudenthal interprets 'noiiemena' as

mathematical structures. The didactics of realistic mathematics

education is founded on these basic assumptions (Treffers,

1987).

Formation of Internal Representations

To represent: a process of signification

Prior to describing the process leading to the formation of

internal representations, we will first examine further the

difference between external and internal representations. For as

far as the didactics of mathematics education is concerned,

external representations are ready-made visualizations,

schemata, models and tables, in short, concrete representations

designed by the teacher (or developer) using the mathematical

properties of representation for the purpose of teaching

children to work with them. Examples of such representations are

the number line, the abacus (with its position system) and the

proportion table. In addition, models constructed by

mathematicians are considered external representations (for

example algebraic or graphic models), without which scientific

debate would be inconceivable and which perform an indispensable

function in society as 'cultural tools.'

Internal representations are constructed on the basis of

meaningful experiences, also called mental representations

(Fodor, 1981) . External representations are created from

meaningful experiences, as internal representations are;

consequently, there is no difference in this respect. The

7
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difference is particularly didactic in nature, in the sense that

external representations have been constructed by adults on the

assumption that children will, from their point of view,

understand the mathematical notions constructed from the adult

angle. Internal representations, however, are in principle self

constructed by children, which increases the chance that the

action is meaningful and insightful for the children.

According to the linguist Halliday (1978), the child

initially understands its world on the basis of meaning, which

it constructs. At first, cognitive development is neither

directed by thinking and logic as described by Piaget (1977) nor

by language (Vygotsky, 1977) according to Halliday. Thinking and

language are directed by the construction of meaning. Halliday

(1978) characterizes his approach as 'social semiotic.' By

taking this particular approach, he intends both to analyze the

development of meaning and to understand it against the

background of the social environment in which the child grows up

and in which meaning comes into existence (see among others

Sinha, 1988). According to Walkerdine (1982), context 'in the

mind' comes into existence on the basis of meaning. The child

forms 'models' (Nelson 1996), schemata or scripts of often-

experienced situations which have come to be meaningful for the

child. Action occurs in contexts, in situations; it is situated,

and therefore in this respect the term 'situated cognition' is

applied (Kirshner & Whitson, 1997). This means that not only do

people think in different contexts, but they also act

differently in various 'practices.' Different 'relations of

8
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signif ication' arise each time, according to Walkerdine (1997).

She advocates what she calls a psycho-semiotic analysis of

'signs,' i.e. a method of analysis for investigating social

processes in which 'signs' arise.

Walkerdine takes the thought that network relationships

between significants are created from Lacan, who speaks of a

'semiotic chain.' As this notion and the concept 'sign' are

essential for our line of reasoning, we will pursue this issue

in greater detail. A 'sign' consists of two constituents, a

'signifier' and a 'signified' (Whitson, 1997) which form a

unity, as represented schematically in Figure 1.

INSERT FIGURE 1 ABOUT HERE

New 'signifiers' are generated repeatedly in a process

characterized by Whitson (1997) as 'chaining of signifiers' and

illustrated as follows:

INSERT FIGURE 2 ABOUT HERE

Initially we see five persons, each of whom has a name. The

names are the 'signifier', the persons are the 'signified.'

Subsequently, the five names can be represented by five fingers.

'Signifier' now becomes 'signified' and the child devises a new

'signifier,' i.e. five fingers. At an even higher level, the

five fingers become 'signified' and the new 'signifier' consists

further of spoken number symbols: one up to and including five

9
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(number symbols are used in the next phase of the process) . What

happens, is that a new 'sign' arises again and again, i.e. a new

combination of 'signifier' and 'signified', while each time a

'signifier' is constructed at a higher level. However, the new

'signifier' does not refer to an object in the external world,

but to a 'signifier' constructed earlier. The child does not

represent an objective reality but a mental, internal process;

he/she re-presents his/her own internal representations

recursively (Nunes, 1992). Subsequently, these internal

representations affect the perception of reality, or to use

Sinha's (1988) words, representations are constitutive for the

material world.

The process by which an internal representation is formed,

is nearly always connected with a social context and experiences

which take on meaning in that particular context. In other

words, representation processes are 'situated' and consequently

everything has or takes on meaning (words, tools, signs, and so

on) according to Lemke (1997) . He speaks of 'ecosocial systems,'

and argues against isolating other social systems, practices and

contexts from each other. After all, human action always stands

for operating with 'signs' (characterized as 'semiosis' by

Whitson, 1997). The concept 'sign' is at the heart of this

approach.

This 'situated cognition' view of the concept of

representation differs fundamentally from the 'classical' theory

of representation (see, for instance, Palmer, 1978; Dretske,

1986; Finke, 1989; Perner, 1991). The latter theory assumes a

10
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separation between a 'referent,' the objective external world

represented, and a 'sense,' the internal representation in

someone's mind. Essentially, this is a dualistic, and, according

to Whitson (1997), a structuralistic view. This dualism has been

superseded in 'situated cognition' theory, in that the

'signifier' always results from a preceding 'signifier,' i.e. is

closely connected with meaningful internal experiences and,

consequently, is not directly dependent on an existing external

world. Or, according to Sinha (1988: 33): 'the "signified" is

produced, rather than referred to.' One might say that the new

'signifier' organizes the actual experiences. The question is

not whether there is an external, objective world; the

discussion is more epistemological than ontological. The

question is how do we know the external world.

In connection with 'situated cognition' theory, this

article argues for a non-dualistic view of representation. A

characteristic feature of this view is that in a constantly

progressing and iterative signification process, a 'sign' is

transformed into a 'signified' for a new 'signifier' at a higher

level. Both in the realistic didactics of mathematics education

(Freudenthal, 1991, Gravemeijer, 1995) and in socio-

constructivistic theory (Cobb, Gravemeijer, Yackel, McClain &

Whitenack, 1997), mathematization is essentially considered to

be a signification process of this kind. According to

Freudenthal (1991: 9), mathematics should start with the

student's 'common sense.' In the words of Freudenthal: "Common

sense, in order to become genuine mathematics and in order to
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progress , had to be systematized and organized. Common sense

experiences, as it were, coalesced into rules (such as the

commutativity of addition) , and these rules again became common

sense, say of a higher order" (Freudenthal, 1991: 9) . In other

words, mathematics starts and ends with childrens' meaning.

In a recent experiment, Cobb et al. (1997) demonstrated how

the process of mathematization evolves as a signification

process. The theoretical basis for the interpretation of the

experiment was Walkerdine's (1988, 1997) signification theory,

socio-constructivism (Cobb, 1994) and the realistic didactics of

mathematics education (Gravemeijer, 1995). According to these

researchers, the basic principles of their theories are largely

consistent with each other: emphasis on student activity,

creativity, problem solving, the reality of contexts and

particularly 'mathematical reality,' meaning the creation of

mathematical objects, thus of a new reality. They therefore feel

that an attempt at integration is both sensible and advisable.

The authors describe at great length how children repeatedly

construct new 'signifiers' - departing from the context of a

'candyshop' - and, among other things, use an arithmetic rack

(with a five structure) and unifix blocks (consisting of ten

bars and loose blocks) . 'Candies' were represented by blocks,

the blocks-representing-'candies' by pictures, etc. In other

words, 'chains of signification' were created as shown in Figure

3 (derived from Cobb et al., 1997: 192).

INSERT FIGURE 3 ABOUT HERE
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Levels of Representation

'Common sense' is organized into mathematics on a more

formal level. This is shown in the process by which children

acquire their first counting experiences, on the basis of which

they start structuring and proceed to formal counting.

Freudenthal (1991) calls the Ability to recite the counting

sequence the first algorithm of a mathematical nature mastered

by the child through 'common language,' the language with which

it is confronted in meaningful situations (Nelson, 1996). The

development of the process in which the child gets a grip on

whole numbers can be chronologically outlined as follows. The

child is Able to recognize quantities of two and three, it

learns the counting sequence as if it were a recited rhyme, it

is able to identify a small quantity, to recognize number -

symbols and count resultatively. The ensuing transition, i.e.

from counting to structuring, is crucial because the insightful

mental arithmetic proceeding from this is the foundation for all

mental arithmetic operations the child as yet has to learn. As

the child discovers meaningful structures, such as number images

on a dice or the five fingers, counting one by one is reduced.

Using such structures, quantities can be ordered and compared

with each other. Adding up, first executed by counting, is now

carried out on the basis of a new 'signifier': structure and

number image. The child has constructed a basis for working

according to rules: structure becomes 'signified'. The

flexibility of addition as well as subtraction procedures

13
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increases as meaningful strategies are applied, for example

working with 'double images' (3+3, 5+5). A condition for the

whole process of emerging numeracy is that the child is offered

stimulating experiences in meaningful situations (Nelissen,

1998).

This example shows that earlier 'common sense' insights

undergo extensive restructuring through the repeated

construction of new meaningful internal representations: from

counting to structure and from structure to insightful

application of rules. The addition of numbers, first considered

and represented as a procedure performed by counting one by one,

transforms into an insightful process using handy rules.

Fractions, too, are represented and understood at different

levels (see Bokhove, 1996, Streefland, 1991). Initially,

children work with informal, context-bound representations; for

example, children start to measure a table using the unit of

measure 'a foot' and they find the table to be 3 1/2 feet wide.

Next is the semiformal, schematic, model-supported

representation of fractions; for instance, the children show in

a schema in how many ways three baguettes can be shared between

four children. At the highest level of representation, formal,

mathematical connections with related concepts become visible;

children solve problems like "compare 3/4 with 0.7." The

children now operate at a purely numeric-symbolic level of

representation, and at this level their insight into the

phenomenon of fractions changes radically.

However, the transition to higher levels of representation

14
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is often a source of problems in mathematics education (Janvier,

1987). One important cause of these problems is that

mathematical denotations are confused with their everyday use

(Zepp, 1989). According to Pimm (1991), this not only concerns

matters like spoken language ambiguity, but also the ways In

which children see something or "students' perspectives." In

particular, when it comes to symbolic representations, confusion

often arises and regression to a natural language and "everyday"

thinking threatens.

The well-known 'Students Professor Problem' (Clement, 1982)

illustrates such confusion. It is a very sticky problem,

obviously not intended for elementary school students. The

problem is the following: a university has one professor for six

students. The assignment is to enter the ratio of students to

professors in an algebraic equation. Over half (65%) of the

participants (including adults) to whom the problem was put

responded: 6S = P, the 'reversal error' according to Kaput

(1987). The gap between the algebraic equation and everyday

language was probably difficult to bridge: 'Six times more

students' usually makes 6S. By applying a mathematical

representation model, i.e. a table, we can get a grip on the

problem.

INSERT TABLE 1 ABOUT HERE

Now, one is less inclined to compare persons instead of numbers.

Table 1 is concerned with ratios and shows that 6 x P equals S,
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in short: 6 P = S.

Another example. Upon asking children which number is

exactly between 0.9 and 0.11, the answer given is often 0.10. It

is a matter of interference - more specifically, negative

transfer between two systems of representation, i.e. the system

of natural numbers (also used in everyday language) and the

system of decimal numbers. For that reason, many authors favor

paying attention to the transition from one mode of

representation into another (Janvier, 1987; Kaput, 1987). Still,

in which way does such a transition have to be elaborated to

take the didactics of mathematics education into account?

The transition from one level of representation to another

can be fostered by systematically appealing to reflection and

also by stimulating students' own constructions and

meaningfulness. The intention is to keep the signification

process going as described above. The following two sections

advocate an instruction model which highlights the Importance of

reflection.

Consequences for the Instruction Model

In this paper representations are considered to be

meaningful constructions and this way of thinking has

implications for the instruction model. First, teaching

mathematics is not merely a matter of transmission of knowledge

and second, children must be given the opportunity to elaborate

their own constructions. It might be better to speak of co-

constructions (Leseman & Sijsling, 1996), for the point is

essentially - as explained in this section - how children

16
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arrive at mathematical activities together. The course of a

teaching-learning process will be explained by means of an

example.

In a maths class, children were asked to find out which of

several differently shaped bottles (without labels) had the

largest volume. In this experiment (see Nelissen & Tomic, 1994),

the children made all sorts of discoveries: plunging bottles in

the water, weighing, measuring by means of a cup, emptying

bottles and seeing which produced the biggest puddle. There was

much discussion about the different constructions or ideas and

the children were encouraged to defend their own ideas.

Moreover, they had to listen well to the arguments of others

(Elbers, 1993, Mercer, 1995 and others showed the Importance of

these conversation characteristics) . Asking the children which

suggestion appealed to them most and why provoked curiosity and

interaction, i.e. critical verification. In the next phase,

verification turned into an experiment and the most appealing

suggestions were tested. The experiences gained during

experimentation were evaluated and the children were asked to

critically reanalyze their own strategy on the basis of the

discussion with and criticisms of the other children. The

construction and interaction phase was followed now by a

reflection phase. As intended, the childrens' own constructions

were raised to a higher level by reflection. Of course, not all

children reached a higher level, as some stuck to their initial

procedure. However, in other children reflection really brought

about representation at a higher level. If reflection indeed

17
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brings about new constructions at a higher level, the whole

cycle can recommence: the new construction again causes critical

interactive verification. Because of its cyclic nature, the

teaching-learning process, as outlined above, can be

characterized as dialectic.

In short, the instruction model can be described in general

terms as follows. In the first phase, children form (co-)

constructions on the basis of their prior knowledge. These

provoke discussion and critical verification - often stimulated

by teacher interventions. Through confrontation with other ideas

and arguments during discussion, the need arises for critical

reflection and, if necessary, adjustment of one's own

representations on the basis of these ideas and arguments. Since

reflection develops from dialogue, reflection can be

characterized as internalized dialogue; external dialogue

becomes internal dialogue. Also, anticipating communication with

another person should be understood as an internalized dialogue

(Nelissen & Tomic, 1996). Reflecting on its own actions will

enable the child to construct representations at a higher level

which in turn will demand critical retesting (Nelissen, Ruyters

& Van Heest, in press).

Level Raising Through Reflection

In socio-constructivistic theory (Cobb & Bauersfeld, 1995;

Cobb, 1994; Cobb et al., 1997; Gravemeijer, 1995)

mathematization is regarded to be a process of signification in

which internal representations develop at an increasingly higher

level. How do these authors explain this rise in level? To

18
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pursue this question further, we will first look at the results

of research on reflective thinking in elementary school children

(Nelissen, 1993).

This research shows that children solving problems at an

advanced level did not hesitate to change their strategies, were

not afraid to abandon a once-chosen solution mode, looked for

links with their general knowledge of the world, controlled

spontaneously their quest for a solution, compared two problem

solving procedures, and, in advance, steered themselves mentally

towards possible procedures. These are important features of

reflective thinking.

Poor problem solvers often held on to a standard procedure.

For example, a picture shows a star-spangled sky. The children

were asked approximately how many stars were shown in the

picture. Poor arithmeticians opted for and stuck to a counting

strategy, which they did not exchange for a smarter estimation

strategy, even after pointed hints from the researcher. These

children did not reflect at all, or only at a low level. For

example, they were unable to compare two different procedures,

not even their own procedure with one of their classmates.

Nevertheless, the comparison of two procedures is of great

Importance. In their educational experiments with children, Cobb

et al. (1997) deliberately provoked comparison operations. For

instance, when a student found an elegant solution offering good

prospects, his classmates were riot meant to blindly adopt his

discovery. In the discussion which the teacher encourages among

the children, we may assume that a child conceptualizes an Image

19
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of the nature, intention and possible advantages of the new

suggestion and compares that image with his or her own approach.

This reflection process is essential for employing new

procedures at a higher level, as emphasized in Piaget's (1977)

and Freudenthal's (1979) work.

In Piaget's (1977) view, reflection ('reflechissements') is

a prerequisite for raising a child's level. 'Reflexive

abstractions' are concepts on a constantly higher level

developed on the basis of 'reflexions,' which Piaget considers

to be 'moteurs du developpement cognitif' (1977: 307). According

to Freudenthal (1979: 9), reflection leads to mathematization at

a higher level: 'The mathematics performed, acted out on a lower

level, is made conscious and analyzed and consequently

transformed into subject matter at a higher level'. Looking for

the right term for this process, says Freudenthal, 'I hit on

"reflection".'

From External to Internal Dialogue:

Socio-Cognitive Conflict

In Vygotsky's (1977) theory, reflection - like every higher

mental function - develops from a dialogue between a child and

adults. For this reason reflection may be called 'internalized

dialogue'. The development of reflection seems inextricably

connected with communication. One cannot help but notice that in

socio-constructivistic views, reference is actually being made

to Vygotsky (Cobb, 1994) and the analysis of the classroom

communication structure is highlighted, while the development of

internal dialogue (reflection) out of external dialogue is

20
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largely ignored. Yet the Vygotskian reflection view is well

suited to socio-constructivism, because in both theories

communication is seen as a prerequisite for the development of

higher cognitive processes.

Just like Vygotsky, Freudenthal (1979) sees reflection as

developing from interaction: 'mirroring oneself in the other in

order to look through his skin."There is one argument why

reflective behavior should start with mirroring at the other's

mind. The argument is language, or more generally,

communication' (1979: 10).

However, the transition to higher representation levels

does not stem directly from interaction and exchange of ideas,

but from what the interaction evokes, i.e. reflection. The

development of higher representation levels is mediated by

reflection; if not, there is a risk that someone else's idea is

being passively adopted. An Important reflective moment is when

one compares one's own approach with someone else's (possibly

better) approach. It is very possible that such reflective

processes took place in the minds of the children participating

in the educational experiments reported by Cobb et al. (1997).

However, these researchers analyzed the discussion between

students from a sociological point of view, and their analyses

clearly show the social norms shaping the discussion and the

group-dynamic structure characterizing the social interaction.

As indicated by the authors, a psychological analysis of

mental processes at the individual level is absent (1997: 214).

Cobb is not always interested in such processes. In another
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recently conducted experiment (Cobb, 1997), the pupils did not

have to learn to handle consciously 'smart' approaches

('consciously figure out', says Cobb, our italics), but were

supposed to gain a clear insight into the relationships between

numbers. Records show that high-quality interactions did occur,

but that no conflict was elicited, a major reason for reflecting

on one's own procedure and a major incentive for critically

reconsidering one's own procedure if required. Students did

occasionally accept a smart method from a fellow student, but

from the records we cannot easily infer precisely on what

grounds the acceptation is based. John says (p. 168): 'I get

it...That's a good way.' How, then, according to John, did the

new approach differ from his own approach? The researchers are

most certainly in the process of detecting reflection, but it is

not identified as such. 'Jordan appeared to reconceptualize his

prior counting solution ...making the transition from counting

by ones to grouping...' (p. 172). Quite likely, Jordan gives

evidence of reflection. After all, he does reconsider and revise

his own method and thus he reaches a higher level of

mathematization.

The fact that individual students establish 'chains of

signification' can, in our view, be explained by the individual

reflection processes (see also Fogarty, Perkins & Barell, 1992).

According to the socio-constructivistic view,

mathematization can be described schematically as follows:

construction ('signifier' 1) --> interaction --> construction

('signifier' 2), etc. We suggest extending this schema as

22
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f ollows : construction ('signifier' 1) --> interaction -->

reflection --> construction ('signifier' 2), etc.

The question remains: how can reflection be evoked during

the process of mathematization? As various researchers have

emphasized (Doise & Mugny, 1984; Borkowski, 1985; Kilpatrick,

1985), the socio-cognitive conflict can be used as a didactic

strategy for evoking reflection. According to Doise and Mugny

(1984) , a socio-cognitive conflict occurs while communicating

during social interaction. A person is faced with a dilemma by

another person, discovers that other perspectives and solutions

can be at issue and through these the need arises for the

comparison of different perspectives. The original procedure or

method is considered from another point of view, or someone

else's point of view, according to Freudenthal (1979) 'shifting

one's standpoint.' Socio-cognitive conflict may be evoked in

different ways, for instance: (1) by challenging childrens'

responses; (2) by introducing problems including several

possible solutions; (3) by solving open-ended problems; (4) by

utilizing Socratic phrasing of a question; (5) by solving

unsolvable problems due to missing data.

In addition to reflection, the transition to higher

representation levels is also fostered by taking into account a

student's own sense-giving, as will be described in the next

section. Besides reflection, there is yet another mechanism to

achieve higher levels of representation.

'Common Sense', Concrete and Concrete-Material

Representations
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As a starting point for the process of mathemization,

consideration is often given to the students' concrete start.

However, the concept 'concrete' can be interpreted in two ways:

firstly, as 'material-concrete' and, secondly, as experience.

According to Freudenthal (1991), the starting point of

mathematization is experience and he terms this 'common sense'.

That is why one can speak of 'common sense representations'

(Gravemeijer & Nelissen, 1996). The initial basic

representations conceived by children are founded on experiences

that are meaningful for children. The act of counting

illustrated how emerging numeracy progresses, repeatedly

achieves a higher level, and at each level turns into 'common

sense.' In the realistic didactics of mathematics education

(Treffers, 1987; Goffree, 1986), this is called vertical

mathematization in context; at that level children represent

from context-derived situation models and on the basis of these

models vertical concept acquisition develops as well as

representations such as tables, schemas, etc. According to

Gravemeijer (1994), at the first level of meaning the child

forms 'models of' which are comparable to the 'mental models'

described by Johnson-Laird (1983). These models refer to context

problems and informal strategies and convert into more general

models, 'models for' which are representations of mathematical

strategies for general mathematical reasoning.

In both cognitive psychology and mechanistic and

structuralistic didactics of mathematics education, one relies

on the realization of mathematical knowledge in external
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representations . As distinguished from realistic situation

models, these representations are called 'material-concrete',

whereas realistic models are called 'common-sense concrete'.

'Material-concrete' representations are considered to be

embodiments of mathematics in its purest form. An example: the

concept surface area is represented by a rectangle in which the

number of columns must be multiplied by the number of rows.

Obviously, this procedure is mathematically correct, though it

is actually derived from the formal final stage of a standard

calculation for surface area (L x W).

In Galperin's learning theory (1980), the learning process

is founded on materialization (material action). Material action

takes place when there is external intervention in concrete

reality (the manipulation of objects); mental action takes place

when this intervention is internal (Tomic & Kingma, 1996). The

essence of Galperin's method of stepwise formation of mental

actions is the formation of valuable mental actions based on

material actions. What is materialized for the children, can be

considered concrete-material representations. 'Common sense' is

not the child's intention, but it is supposed that the structure

of what is materialized guides the childrens' actions. In other

words, basic representations are material-concrete and not

'common sense' in nature.

The concept of deducing representations directly from

mathematics is characteristic for the works of Dienes (1963) and

Piaget (1977), partly for Davydov's (1977) experimental programs

and for the didactical elaboration of the 'information
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processing approach' (Resnick & Ford, 1981). The latter

researchers in particular based their teaching on actions

derived from experts.

Broadly speaking, material-concrete representations are

often artificial, such as, for instance, the Cuisenaire-

material, which consists of little bars of different colors and

lengths, used as models for associating numbers. Few children

succeed, particularly because they have no knowledge of the

underlying structure and, thus, do not know what is actually

represented (Cobb, Yaeckel & Wood, 1992). After all, the

underlying structure was invented and made concrete by adults,

who already have an insight into the system concretized by them.

Consequently, they understand the embodiments. For children, the

above-mentioned procedure makes no sense (Janvier, 1987) for

they do not know what those embodiments refer to. This approach,

therefore, provoked some criticism (Cobb et al., 1992; Greeno,

1991; Von Glasersfeld, 1991). Learning mathematics, the

researchers argued, is essentially children forming internal

representations of their experiences on their own. Facing them

with ready-made external representations inhibits that process.

Cobb et al. (1992) characterize this didactic as the

'instructional representation approach' giving rise to the

'learning paradox' (Bereiter, 1985). While embodiment is meant

to clarify an 'idea' or 'theory,' knowledge of that particular

'idea' or 'theory' is required for understanding what has been

made concrete. To prevent a 'learning paradox,' teaching has to

be based on meaningful contexts for children, enabling them to
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give meaning to their actions and to develop their own

representations. This does not mean that representations

introduced by teachers are wrong by definition, but that even in

those cases children must be given the opportunity to develop

representations alone or together while being guided by the

teacher's hints. To a great extent, teachers are responsible for

evoking the interactions and reflections that are essential for

the construction process.

Constructivism and Realism

In this paper the concept of representation was analyzed

from a socio-constructivistc point of view. However, what is the

relationship between constructivism and the most prominent

pedagogical movement, realistic educational theory (Goffree,

1986; Treffers, 1987)? According to Phillips (1995),

constructivism is supported by a wide philosophical or

theoretical spectrum, including Von Glasersfeld, Kant, Kuhn,

Piaget and Dewey.

Originally, constructivism was a general theory of

knowledge acquisition instead of an educational theory

(Gravemeijer, 1995) . However, realistic educational theory is a

teaching methodology and, consequently, we are working with two

different theories. While constructivism is characterized by a

diversity of interpretations (Gravemeijer, 1995), the critical

commentaries on constructivism are mainly aimed at radical

constructivism (see for instance Solomon, 1994).

This paper focused on the rather young research tradition

endeavoring to integrate socio-constructivism with realistic

2 7

2 8



- Representations in Math Education -

educational theory (Cobb, 1994, 1997; Gravemeijer, 1995).

According to Gravemeijer (1995), these theories are

complementary and research findings (Cobb et al., 1997) appear

to support this view. However, the above-mentioned theories are

different, not only because they were developed in a different

theoretical context (epistemological versus teaching

methodological) but also because they are aimed at differently

programmed goals. Among the major goals of realistic mathematics

educational research are: (1) research in the didactic macro-

structure of mathematics education for the development of new

curricula, (2) research into new learning routes fostering

concept formation processes in the long term, (3) research into

relationships between learning routes, (4) the development of

student learning materials and teacher aids, (5) reflection on a

'national curriculum' for mathematics education, etc.

The socio-constructivist research program is not primarily

directed by the demands from actual practice, but by the need to

explore new perspectives in relatively small-scale research

settings with a view to stimulating the development of theories.

Perhaps these explorations cannot immediately be used to maximum

advantage in educational practice, but they might well be

fruitful in the long run. Socio-constructivists wish to

demonstrate that children often learn more insightfully to

mathematize on the basis of their own internal representations

than on the basis of explanations and materializations developed

for them by adults. This does not Imply that socio-

constructivists take the view that children have to invent
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everything by themselves; this ideal is mainly advocated by

radical-constructivists. In those instances in which adherents

to the realistic didactics of mathematics education react

reservedly to constructivism, they most probably react against

the ideal of the radicals. For the time being, De Lange (1997)

speaks of 'minor differences,' mostly relating to the fact that

the importance of the goals of realistic mathematics educational

research as mentioned above are underestimated (see also

Solomon, 1994), although they are a particularly important

condition for successful educational reform.

In spite of the obvious differences between constructivism

and realistic mathematics education mentioned by De Lange (1977)

and the ones he does not mention such as the extent of teacher

control - there are also major similarities such as the

attention to discussion and language, the Importance of informal

procedures, the function of contexts and the attention for

motivation and meaning. However, of overriding Importance is

that socio-constructivism considers mathematization to be a

process of advancing signification and this view on learning

mathematics in particular is a tenet in Freudenthal's didactic

phenomenology, i.e. mathematics in children always starts and

ends with 'common sense.' Mathematics starts and ends for

children with meaning. There is no disagreement concerning this

issue, according to Dolk (1997).

Finally, the question remains what the Importance of socio-

constructivism is for everyday educational practice. Solomon

(1994) warns against exaggerated expectations. Children are no
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scientists , and they do not construct knowledge in the way

scientists do. What children have to learn is often totally new

for them, and therefore their environment intuition and the new

concepts that must be learned are unrelated. It is for this

reason that Solomon warns against underestimating the teacher's

role in the process of culture transfer (Awn Oers, 1994). With

this critical observation, Solomon (1994) turns against the

radical constructivists.

Up to now Cobb et al. (1997) have shown in small-scale

experiments the importance of socio-constructivism for the

practice of mathematics education. However, the children were

not asked to construct their own mathematics. The experiments

investigated how pupils, through interaction with their fellow-

pupils and intensively trained teachers, constructed

mathematically relevant procedures (Cobb et al., 1992).

Conclusion and a Look Ahead

Socio-constructivism wrestles with two crucial problems.

Firstly, it is as yet not certain that childrens' findings offer

long-term possibilities for what is to be learned and secondly,

one wonders how the teacher is to evaluate this process. Teacher

interference is inevitable if a child's findings are not robust

enough and without possibilities, and this inhibits the power of

the constructivistic source of inspiration. To cope with this

problem, it is necessary for the teacher to gain an insight into

the macro-curricular position and organization of mathematics

material, the 'big ideas' (Cobb, 1997), or beacons for the

teacher to set his/her course by. Socio-constructivists have

3 0
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indeed recognized the need for a 'pedagogical agenda' for

gaining insight into the 'potential significance of issues that

might emerge as topics of conversations' (Cobb, 1997: 277).

The same holds for the instruction model presented in this

paper. The model alms at evoking interaction and reflection on

the basis of teacher intervention. This is possible on the basis

of the macro-structure of every realistic curriculum at least in

principle. Nevertheless, many, if not all, crucial activities

will depend on the quality of teacher-student interactions (see

Mercer, 1995). These must be high quality, i.e. the teacher must

provoke and stimulate the desired processes in children at the

right moment, in the right way, with the right means and with a

clear insight into which findings of children do indeed offer

prospects for mathematization. Accomplishing this will require

intensive post-graduate teacher training.
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TABLE 1

Students Professor Problem (Clement, 1982)

S (number of students) P (number of professors)

6 1

12 2

18 3
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Figure Captions

Figure 1. Sign Constituents

Figure 2. Example of a Signification Chain

Figure 3. "Chain of Signification"
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